

Transcriptional circuitry and the regulatory conformation of the genome

WORKSHOP

Ofir Hakim

Faculty of Life Sciences

Regulatory Chromatin

Cell Function is Largely Mediated by Transcription

Layers of Genome Regulation

Genome Regulation in 3D

Noonan and McCallion, Ann Rev Genomics Hum Genet 11:1 (2010)

Cell-Type Specificity

The Complexity of Genome Regulation

chr10:79,970,001-80,260,000

Regulatory Elements

Image modified from: Greg Crawford, Cold Spring Harb. Protoc., 2010.

A Strategy To Enrich For DHS

ATAC-seq Assay of Transposase Accessible Chromatin

FAIRE-seq Formaldehyde-Assisted Isolation of Regulatory Elements

Resolution and Background

Pros and Cons

Common advantages

Unbiased Quantitative Not require special reagents such as antibodies Can be applied to any organism and tissue

	DNase-seq	ATAC-seq	FAIRE-seq
# of cells	10^7-10^8	10^3-10^4	10^6-10^7
Sample pre treatment	Pure nuclei	Pure nuclei	Fixed sample
Experiment time	3-4 days	1 day	3-4 days
Peak resolution	High	High	Low
Motif enrichment and footprint	+	+	-
Required user proficiency and skill	+++	+	+

Chromatin Immuno Precipitation - ChIP

Detection of protein-DNA associations in vivo

Histone mods

1. Crosslinking With Formaldehyde

B Formaldehyde will crosslink amino or imino groups within 2Å, for example:

Optimization:

FA%- commonly 1% Time- commonly 10 minutes Temperature- commonly 37°C

2. Fragmentation

Mnase digestion

MNase digestion

Sonication

http://www.cellsignal.com/ Nature Reviews Genetics 15, 814–827 (2014)

Fragmentation and Peak Resolution

3. Immunoprecipitation (IP)

The protein of interest is immunoprecipitated together with the crosslinked DNA

- Specific antibody
- Epitope tagging of protein of interest (HA, myc, Flag, His)

4. Decrosslinking and DNA purification of the DNA

5. Analysis

Representation of enrichment by ChIP

5. Analysis

Identification of DNA regions associated with the protein/modification of interest

ChIP-seq Peak profiles are variable

Controls

- Input DNA Chromatin sample processed without the immunoprecipitation step

- <u>No antibody control (IgG)</u> ChIP without specific antibody
- <u>No tag control</u> ChIP in a cell not having a tag on the analyzed protein

DHS and TF Binding

DHS coincide with multiple TF binding sites

DHS may contain localized peaks of hypersensitivity

DHS and TF Binding

TF binding is correlated to localized enrichment of hypersensitivity within DHS

Localized Protection within DHS at TF Binding Motif

